Biomimicry 101: Other Biomimetic Medical Advances: Progress and Steps to Diabetic Solutions and Spinal Cord Regeneration

other-biomimetic-solutionsFigure: The islets of Langerhans (left panel), and a spinal cord neuron (right panel).

When you ponder biomimicry, think design, intelligent design, and creation, but please don’t think evolution. And when considering biomimetic applications, let your imagination know no bounds.

Given our claim that the heart’s design is inherently unique and complex, an argument concerning the uniqueness of the pancreas can likewise be made, and is equally valid. Both arguments stem from knowledge that we are a special creation of God’s creative work. What is more, many features of the pancreatic organ-system are conducive to biomedical mimicry, which is important for people whose pancreas is limited functionally. Therefore, as we continue this series, we want to spotlight the work by Fournier, Goldblatt, Horner, and Sarver (1995) on patenting a bioartificial pancreas for combating diabetes (with the patent first filed in 1993). As we shed light on their process, our hope is students will not only gain valuable insight into ways to approach innovative ideas in health care, but also through God’s leading develop enthusiasm about career choices in mathematics and medicine, including more heavily-weighted bioengineering disciplines, such as microbiology and biochemistry. In our view, a general familiarity with the steps taken to patent a bioartificial pancreas can be used to engineer other devices that also fight diabetes or other diseases or disorders, such as cancer or spinal cord injury, via biomimetic solutions. Ultimately, the key to any medical endeavor is to get ideas into the clinical trial stage.

Biomimetic diabetic solutions

According to an educational web-based forum about the pancreas, as sponsored by the National Institutes of Health (2018), this organ has two important functions:

  • Production of enzymes (collectively, lipases, proteases, and amylases) that break down food in the digestive tract
  • Production the hormones insulin and glucagon to regulate blood sugar

— Mathematical Model —

Having a mathematical model in your tool belt is always a good thing. There are occasions when both invention and mathematics resolve themselves simultaneously. Sometimes the invention logically comes first, and the underpinning mathematics comes later. However, mathematical models can be generated prior to pressing forward with an invention.

In the 1990 article “Mathematical Modeling of a Novel Bioartificial Pancreas Design for the Control of Type I Diabetes,” Sarver and Fornier apply numerical analysis to their work on a bioartificial pancreas. We will leave it to you to decide the way in which Fournier, Goldblatt, Horner, and Sarver applied the mathematics to solve their case for a bioartificial pancreas patent (before, simultaneously, or after).

What is Numerical Analysis?

Numerical analysis is the iterative application of mathematics. Prior to the development of computers, numerical methods were necessary for solving engineering-based problems. With the aid of computers, numerical methods (i.e., iterative processes) have become a much more powerful tool because computers can perform the iterations much faster than we can calculate them. Numerical analysis takes advantage of algorithms to attain an approximation; it may be best defined as a branch of mathematics that places emphasis on the numbers rather than the symbols.

Numerical methods can be a beneficial component to any college undergraduate study in the STEM (science, technology, engineering and mathematics) majors. What is more, a numerical methods course is oftentimes recommended for junior-level (i.e., third-year) college STEM undergraduates. Prerequisites include high school algebra, differential calculus, integral, calculus, and ordinary differential equations.

Please click here to learn more about numerical methods.

The Bioartificial Pancreas

The first page of U.S. Patent No. 5,387, 237 (1995), shows Fournier, Goldblatt, Horner, and Sarver’s patent summary (i.e., the abstract) for their bioartifical pancreas, as follows:

An implantable bioartificial pancreas device having an islet chamber containing glucose responsive and insulin-secreting islets of Langerhans or similar hormone secreting cells, the islet chamber having baffle means inside thereof to assist in even distribution of the islets in the chamber, one or more vascularizing chambers open to surrounding tissue, a semi-permeable membrane between the islet and vascularizing chambers that allows passage of small molecules including insulin, oxygen and glucose and does not allow passage of agents of the immune system such as white cells and antibodies, the vascularizing chambers containing a growth factor soaked fibrous or foam matrix having a porosity of about 40 to 95%, the matrix providing small capillary growth and preventing the blood from clotting in the lower chamber.

Efforts toward spinal cord regeneration

To help us navigate toward a delivery method for spinal cord tissue regeneration, we consider a bioengineering survey and literature review by Wininger, Deshpande, and Bester (2012), who examined suitable ideas for delivery methods for the regeneration of the lumbar disc based on vascular supply/penetration, as follows:

Kloth et al issued a report on patient selection criteria for IDET in 2008.17 Notably, the criteria outlined in the report supports our decision to refrain from pursuing IDET in this case. Furthermore, similar to discography, percutaneous intradiscal radiofrequency thermocoagulation, and intradiscal biacuplasty, IDET requires needle placement into the disc.

When considering needle placement into a disc, it is important to consider the long-term effects of disc puncture. On this point, the biological effects of disc puncture continue to be debated in the literature. A recently published 10-year follow-up study on provocative lumbar discography by Carragee et al claims accelerated disc degeneration was associated with disc penetration injuries during discography.18

Perhaps more interesting is consideration of the knowledge gleaned from investigations on central disc vascular supply relative to disc puncture. A prospective study conducted by Deshpande et al on lumbar discography first confirmed real-time intravascular uptake of iodinated contrast media in 14.3% of the studied patient population.19 Further, although such episodes of uptake continue to be observed,2 it has long been observed in the radiological community that the intervertebral disc might enhance on MR images if examination start is delayed over a 30-minute window after gadolinium administration.20 Furthermore, serial MR images clearly demonstrate the phenomenon known as diffusion march (ie, the diffusion of gadolinium across the vertebral endplates and into the disc) with no intradiscal enhancement noted at 24 to 48 hours after contrast administration.21 Thus, for interventional pain physicians, broader implications of these vascular supply studies may help remedy delivery challenges related to bioengineering designs to regenerate the intervertebral disc, such as tissue scaffolds, mesenchymal stem cell therapy, or biomolecules to act as biochemical mediators within the disc.22-31

Finally, we highlight a forward-thinking concept of “direct” electrical stimulation of the intervertebral disc to induce analgesia. This novel technique places a percutaneous SCS lead inside or just outside the confines of the disc, thus sparing as much disc tissue as possible.32 However, the idea of electrically stimulating the disc in this manner has yet to be proven surgically feasible or provide clinically acceptable pain control. Thus, members of the interventional pain medicine community interested in neuroaugmentive techniques are involved in a truly transformative era of research.11,12 Electrical stimulation of the intervertebral disc could provide benefit for the disc’s cells and tissue, or provide beneficial synergies. For example, electromagnetic field stimulation has been shown in vitro to promote human intervertebral disc DNA synthesis. In addition, electrical stimulation applications could be used to promote cellular proliferation as an amplification process in autogenous disc cell therapy to regenerate disc tissue.33 (p. 434)

With this survey in mind, however, the hope for regeneration of spinal cord tissue hinges on demonstrable safety in crossing the blood and central nervous system barrier (better known as the “blood-brain barrier”).

Can you imagine a career advancing medicine through insight into solutions that might mimic nature? Nature and the universe in its entirety is God’s great creation; as His special creation, we can certainly look upon our Creator as Physician!

Christian scholarship extending into professional roles is sincerely needed in education and culture. Chemical engineering, bioengineering, and medicine can be promising careers for those who like to study physiology, microbiology, biochemistry, and mathematics.

References

Fournier, R.L., Goldblatt, P.J., Horner, J.M., & Sarver, J.G. (1995). Bioartificial pancreas. U.S. Patent No. 5,387, 237. Washington, D.C.: U.S. Patent and Trademark Office. [View patent]

National Institutes of Health. (2018). Informed health online. How does the pancreas work? Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK279306/.

Sarver, J.G., & Fornier, R.L. (1990). Mathematical modeling of a novel bioartificial pancreas design for the control of type I diabetes. Mathematical and Computer Modelling, 14, 551-556. [View in article]

Wininger, K.L., Deshpande, K.K., & Bester, M.L. (2012). Persistent pain following lumbar disc replacement. Radiologic Technology, 83(5), 430-436. [View abstract] [View in PubMed]

Previous articles in this series:

Biosensors will be featured in the next installment of our biomimicry series!

Biomimicry 101: Introduction to Biomimicry (and Biomimetic Applications)

kingfishersThe common or Eurasian kingfisher (depicted above on the left), and the belted kingfisher (depicted above on the right).
bullet-trainThe nose of Japan’s 500 series bullet train was fabricated to mimic the design inherent in the beak of a kingfisher to reduce drag and improve aerodynamics as the train exits tunnels.

Since the 1940’s, biomimicry has become increasingly commonplace as an integral approach to problem solving. The word biomimicry means to mimic life; the adjective form of the word is biomimetics.

— Biomimicry and the Bullet Train —

Biomimetic applications are becoming more widespread, and solutions to the problems they solve are growing more and more purposeful and specialized, with the array of applications varying, for instance, from medicine to industrial design and industrial engineering. One exceptional case in recent years involved Japan’s 500 series bullet trains. A design flaw surfaced when this series came online in the late 1990’s. The issue boiled down to the bullet-shaped, rounded-off nose designated for each lead car. It was anticipated that this shape would be highly aerodynamic, but the contours favored a rather unnerving pressure gradient. This pressure gradient, known as a shock or pressure wave, triggered a sonic boom every time a train exited tunnels at operating speeds. To remedy this problem, train architects took their cues from kingfishers.

A kingfisher is a type of bird ranging throughout many temperate and tropical climates. Often one or two may be seen perched above banks along rivers and fresh water ponds and lakes (see the images of two different species of kingfishers above). As the name suggests, they feed on fish. What is more, the kingfisher often conveys a stately, prominent mannerism, which lends itself towards being somewhat showy. You might say they have good stage presence. As master anglers, kingfishers dive headfirst into the water to catch their meals. They strike with skilled accuracy — starting from a perch or in a hovering position, and then plunging out of the sky beak-first into the water like a dart. Yet, even though their beaks pierce the water, breaking the water’s surface tension, kingfishers barely create a ripple.

It was this ability, the zeroing out of the point-of-entry pressure wave, which made a distinct impression on the 500 series’ architects. And it was inspiration resulting from that impression which ended up being the key to solving the problematic sonic boom dilemma. With the dynamics of the kingfisher in mind, the architects retooled the nose of the bullet train to mimic the inherent design in the kingfisher’s beak. Indeed, after completing their imaginative and inspired rhinoplasty, the trains’ newly engineered noses nullified the pressure gradient that had once plagued them in the original fabrication. Most importantly, the new, elongated profile did away with the sonic boom altogether.

The example of the bullet train gives us a clear picture of how biomimicry can capture the imagination and attention of industrial designers and mechanical engineers. The 500 series bullet trains operated from 1997 to 2010.

Remark: By all accounts, the species of kingfisher that train designers took notice of is the common or Eurasian kingfisher (depicted above on the left). The kingfisher common to North America is the belted kingfisher (depicted above on the right).

— The Original Hook and Loop Fasteners —

The original hook and loop fasteners (think VELCRO® brand fasteners) lend another historical perspective on biomimicry. Swiss engineer and inventor George de Mestral discovered these novel fasteners. The story says that when walking his dog through the Swiss countryside in the early 1940’s, de Mestral was intrigued with the burrs that stuck to its fur coat (as well as to de Mestral’s clothes). Upon closer inspection, de Mestral realized that the tips of the spikes of a burr have a unique design, a tiny hook. And while each burr contained dozens of spikes, in reality each burr contained dozens of miniscule hooks. What is more, de Mestral came up with a way to duplicate these naturally-occurring miniaturized hooks synthetically, and he combined them with fasteners containing hundreds of tiny loops. Today, VELCRO® brand fasteners continue to be a well-known application of biomimicry, as they are by far one of the most widespread, useful examples.

Remark: Please click here to learn more about the history of VELCRO® brand fasteners, including the fun fact that these fasteners accompanied Neil Armstrong during mankind’s first walk on the moon. (As a side note, readers who are interested in knowing more about Neil Armstrong may do so via our recent blog that celebrated the 49th anniversary of Armstrong’s first steps on the moon. In addition, readers will also find interesting tidbits comparing and contrasting evolutionary theories about the moon versus its creation.)

— Biomimetic Innovation —

Because biomimicry is such an innovative and unique field of study, we at Ashland Creation Colloquium are dedicating an entire series to the topic. We are calling the series Biomimicry 101. Our aim is to showcase creation. Creation is the biblical account of everything concerning our world and the universe (i.e., the who, what, when, where, and why – and perhaps even the how). At its core, creation takes into account “intelligent design” via a designer (i.e., creator). This designer is the God of the Bible.

Remark: Creation scientists carefully consider biblical perspectives when exploring, testing, and describing the richness of the universe. Given that scientists specialize in particular fields of study, creation scientists explore the universe through specific scientific disciplines encompassing the finite to the infinite, i.e., the life sciences to the field of cosmology.

For the balance of this article, we will clarify several key terms that lay a foundation for relevant and comparative studies instrumental to the field of biomimicry. Then, given this foundation, we outline topical categories that will be covered for the remainder of the series.

Key terms – the so-called “bio” group:

The intent of this section is to help differentiate between key terms, which collectively, we will refer to as the “bio” group. Individuals who work within this group are well-suited to explore and apply biomimicry.

Biomimicry, biomimetic(s), and bionic(s)

  • As defined above, the first two terms simply refer to mimicking life, with the first term being a noun and the second term the adjective form.
  • From the perspective of science and medicine, bionics may be thought of as the integration of that which is mechanical with that which is physiological (via a better understanding of the nervous system). The best example is functional electrical stimulation, which is a field that seeks to restore movement and automatic function, among other goals. Technology brought about by neural engineering is at the core of bionics, the leading edge of the neural interface.

Bioengineering

  • We can think of bioengineering as a broad category that focuses on medical applications. The field of regenerative medicine gives us a prime example. One specific area of research in regenerative medicine is the attempt to rectify impairments associated with the loss of normal spinal function. For example, attempts are ongoing to regenerate diseased vertebral discs, as well as damaged nerve cells (i.e., neurons) within the spinal cord.
  • Bioengineering may be defined within the broader category of biomedical engineering. However, because bioengineering focuses almost purely on innovations in healthcare and medicine, distinguishing between bioengineering and biomedical engineering can have practical advantages for clear communication.

Biomedical Engineering

  • As described above, biomedical engineering can serve as an umbrella term for bioengineering. The reason refers to the recognition of the term biomedical engineers by the U.S. Bureau of Labor Statistics to identify individuals who work in biomedical engineering. However, often the term biomedical engineer is used by individuals who service medical equipment, such as physical therapy equipment, operating room equipment, or heart monitors. In most regions across the country, you will find a biomedical engineering department housed in your local hospital, where the hospital staff may simply call the department “biomed.”

Bioneer versus Biomedical Engineer

  • The term bioneer is a recently introduced term which combines the words “biological” and “pioneer.” And although bioneer has not received a formal definition, it seems to be used in a colloquial sense to describe a person at the forefront of the biological sciences frontier.
  • In contrast to bioneer, the term biomedical engineer has been widely adopted. According to the website of the U.S. Bureau of Labor Statistics (click here), biomedical engineers are individuals who “combine engineering principles with medical and biological sciences to design and create equipment, devices, computer systems, and software used in healthcare.”
    • Field engineer is a term sometimes used within biomedical engineering. The term is mostly associated with biomedical engineers employed by the makers of highly specialized medical equipment, such as MRI and PET scanners. These individuals have gone through specialized training to travel in the field to handle more delicate service and repair requests.

Biostatistics

  • The discipline that integrates statistical analysis with the biological sciences is biostatistics. For example, a biostatistician may work with biologists, chemists, material scientists, chemical engineers, and industrial engineers to apply statistical methods that help solve real-world problems. Biostatisticians also provide analytical guidance for feasibility studies, preliminary research for investigational trials, and ongoing support for current research programs.

Biosensor(s)

  • Biosensors use biological agents and/or processes in the detection of other biological agents and/or processes. Microfluidic chips for the detection of malaria and a microelectromechanical system (often abbreviated MEMS) that detects Dengue virus are two such examples. These types of devices may be referred to as “lab-on-a-chip technology” or “point-of-care testing.” Yet biosensors also consist of specialized machinery for the detection of biological states and diseases (i.e., physiological abnormalities). Examples of these types of biosensors include molecular imaging scanners, such as magnetic resonance imaging (MRI), positron emission tomography (PET scans), and single-photon emission computed tomography (SPECT scans). In fact, researchers driving the new paradigm – the next frontier – in biosensing and diagnostic medical imaging are attempting to combine, or fuse, MRI and PET imaging techniques (so-called fusion imaging). Moreover, it was only recently that the fusion of PET and x-ray computed tomography (CT) held this distinguished honor as the new frontier.

Biomaterial(s)

  • Biomaterials are engineered materials placed into the body to minimize loss of structure and function. The material or object placed into the body is known as a foreign body. Based on our body’s reaction to such materials, there are three characterizations of the foreign body, as follows:
    • Intolerable
    • Tolerable
    • Biocompatible
      • The goal of biomaterial engineers is to achieve biocompatibility. To date, however, this goal has not yet truly been attained. Therefore, understanding normal tissue healing and foreign body response becomes critical to achieving biocompatibility.

Biomechanics (think Kinesiology)

  • The study of biomechanics is to better understand the mechanics of the body, and it includes human locomotion as well as body systems (such as the cardiovascular system). A biomechanics approach to locomotion first considers statics versus dynamics, and then considers kinetics and kinematics. We can say that kinetics examines the external forces acting on the body, and that kinematics describes movement without regard to such forces. Often the words biomechanics and kinesiology are used interchangeably. However, kinesiology means the study of movement, and it is more intently focused on anatomy and physiology, particularly the neuromusculoskeletal system.

The focus of this series seeks to relate the benefits of biomimicry on the humanities, and the topics that will be surveyed are as follows:

  • Biomaterials
  • Cardiovascular Medicine
  • Other Medical Applications
  • Biosensors
  • Fire Extinguishers, Winglets, and Wings
  • Insert: On Eagles Wings
  • Water Purification Systems
  • Human Gait: Biomechanics/Kinesiology
  • For More Information (and Education)
    • Here we feature a formal biomimicry fellowship sponsored through the University of Akron’s Integrated Bioscience PhD Program, and similarly highlight the Great Lakes Biomimicry Institute.

When you find yourself pondering just what biomimicry is, think design, intelligent design, and creation, but please don’t think evolution. And then when considering biomimetic applications, let your imagination know no bounds.

The next installment in our biomimetic series will deal with biomaterials!